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S U M M A R Y  
A solution of the plane elasticity problem for the cantilever beam is presented. The classical solution in the interior 
region of the beam is developed with the aid of a geometric parameter. The effect of local transverse deformations and 
distortions are accounted for in the solution near the clamped edge. Some numerical results are presented. 

1. Introduction 

The classical plane stress solution of the cantilever beam is well known [1]. The solution, 
obtained by the use of an Airy stress function, is satisfied at the support by requiring that either 
the slope of the deformed cross-section of the beam is set equal to zero at the beams centerline, 
or the slope of the centerline itself is set to zero. The distorted cross-section is then without the 
requisite zero displacements, throughout its depth, needed to satisfy a truly fixed edge. 

It is the purpose of this paper to investigate the solution of the cantilever beam problem and 
especially the edge solution near the support. Associated problems have been investigated by 
others, Benthem [4], Torvik [3] and Gusein-Zane [7] to name only three. In these papers the 
mathematical formulation and/or the method of solution were different from the problem 
presented here. 

The method presented separates the solution into two parts: the "interior solution" and an 
"edge solution". This is accomplished by the use of parametric expansions [2], where two 
locally valid expansions of the stresses and displacements, in terms of a geometric parameter e, 
is accomplished. The substitution of these expansions into the elasticity equations yield a 
sequence of systems of differential equations for the determination of the expansion coefficients. 
The solutions in the two regions are then matched and all the boundary conditions are satisfied. 
The final result is accomplished by means of the principle of virtual complementary work [5]. 
In accomplishing the solution the effect of enforcing elementary bending theory and the 
distortion of the beams cross-section are treated separately. The superposition of the solutions 
would, of course, yield the final result. 

2. Formulation of exact equations 

Consider a rectangular strip of height 2H, unit thickness and length L made from an isotropic, 
homogeneous, elastic material (see Fig. 1). It is assumed that the stress and displacement 
description of such a strip can be obtained by the use of the plane stress elasticity equations. 
The end X--0, - H <  Y_< + H  is taken to be fixed, while the end X=L,  - H <  Y< +H is 
subjected to prescribed stresses. The surfaces Y= _+H, 0< X < L are prescribed to be free of 
surface tractions. We further assume that the length of the strip is much larger than the height. 

Define a parameter ~ and dimensionless coordinates by 

e= H / L ,  y=  r / H ,  x =  X / L  (1) 

where in accordance with our assumptions ~ < 1. 
The displacements in dimensionless form are defined by 
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t7 o- 
u=u  i C ,  L .  (2) 

The dimensionless stresses are defined as 

axx = Gtxx , (~yy = ~Ttyy , Gxy =- tTtxy. (3) 
In the above o- is a representative stress level and E is Young's modulus. 

In terms of the defined variables (1), (2) and (3) the equilibrium equations can be expressed as 

(~txx 8txy 8txy (~tyy 
e~xx  +Tf-y  = 0 ,  e ~ - x  +~)-y  = 0  (4) 

while the constitutive relations become 

~_u~ = G~-V tyy ,  t?u2 = e ( t y r - G x )  Oul _ ~?u2 Ox t?y ' Oy ~ cx  + 2e . l  + Zv Gy . 7 ( ) (5) 

The associated boundary conditions include the displacement conditions on the clamped end, 

Y,V 

Oyy 

O'xy @ Oxx I xy t: 
Figure 1. The cantilever beam. 

- X,U 

the stress conditions on the free end and the boundary y = -t- 1, namely 

ul(0, y ) =  u2(0, y ) =  0 tx~(1, y )=  0 ,  Gy(1, y) = f ( y ,  e) (6) 

tyy(X, ++_ 1) = Gy(x, ++_ 1) = 0 .  

3. Formulation of the interior problem 

We assume the displacements ul and u2 can be asymptotically represented by a power series 
in terms of a sequence of "interior displacement coefficients" u]")(x, y) and u~")(x, y), in the 
following manner 

g l ( X , y ;  8 ) =  u] l )8+H(3)g  3-~-...  

u 2 (x, y ; e) = ut2 ~ + u(22) e2 +. . .  (7) 

It follows from Eq. (5) that each stress component may be represented by a power series in e in 
terms of a sequence of"interior stress ' " " (") coefficients t~  (x, Y), -xrt("),-,(~ y) and t~ ) (x, y) in the following 
way 

tx (X, y; ... 

txy(X ' y ;  g,) t(2)s ( 4 )  4 = + t .  + (8) ~ x y  . . . .  

tyr (x, y ; (3) 7 g) = tyy g q-t(5)g5-t- ~ y y  . . . .  

Substituting (7) and (8)into (5) and (4), we obtain 



An examination of  the edge effect in a cantilever beam 353 

and 

(u]l)g+ u?)g 3 + ...) = ( t ~ e + t ~ e  3 + . . . ) -  v(t~)g 3 4-t(5)~5 q_...) 
X - -  -YY ~ - -  

ay (ut2~ "'') = ,-yy(t(3)~'3q-t(5)F' 5 _  ---yy . . . . .  4- . ) - - v ( t ~ e + t ~ g 3 +  ..) 

__6 (u~11)e+u?)e3+...) _ O (u~20)g+u~22)e3 + . . . )+2(1  +2v)(txy 3 +t~4ye(4) s +. . . )  
ay ax 

( t x x  ~ "4- t x x  ~ "Or-''') "dr- ~ y  ~,~xy ~ - - - x y  . . . . .  ! _ _  (1) 2 (3) 4 ~ ( t  ( 2 ) ~ 2 q - t ( 4 ) ~ 4 q -  ] = 0  

Ox 

(t(2) P-3 -l- t(4) ~. 5 ~ (t(3)~34-t(5)g54-...) 0 
~x ,-x~ ~ - - ~ -  + . - - )  + ~ ,-~ ~ - - ~  ~ - 

respectively. The tractions at x =  1 are taken  as 

tx~(1, y; e ) = 0 ,  txr(1, y ; g ) = - - { ( 1 - - y Z ) e  z.  

The first set of equations obta ined f rom (9-13) are 

&i 04 o) 
- -  V X X  ~ 0 - -  

8x 8y 8y 8x 

Ot(~ 2) Ot~ t~t (3) t~t (2) 
- -  - - ' y y  _ _  ~ - x y  

8y 8x 8y ~x 

(9) 

(lO) 

(11) 

(12) 

(13) 

(14) 

(15) 

Integrat ion of (! 5) yields 

u{2~ = Ut2~ u i l ) =  U] ' ) ( y ) - y  dU~2 ~ 
' d x  ' 

t()] dU(al) d2 U(z~ t (2) T (z) x - d2 U(ll) y2 d 3 U(2 o) 
- = - x r ( )  Y dx 2 2 dx 3 dx Y dx z , -xy (16) 

dT(2) y2 d 3 y3 d 4 
(3) x ,  ~ 

.yyt(3) = Try ( x ) - y  ~ + 2 dx 3 6 dx 4 

(3) r U(2 ~ and U(x 1) are displacements defined at y =  0, and -xy r(2) and Tyy a e the corresponding 

(17) 

(3) _ ( 1 8 )  Try - 0 .  

where 
stress components .  The condit ions 

r x t (3) x _ 1 ) = 0  x , { , + l ) = 0 ,  , , ( , +  
yields 

T (2) = - � 8 9  d3 U~2~ d2 U]I) - O, 
xy dx 3 , dx 2 

F r o m  (18) we obtain 

Ui I ) =  A a x + A z .  (19) 

Here A 1 and A 2 are constants. 
F rom  Eqs. (14) and (11) we have 

d 3 U~2 ~ 
- � 8 9  2) dx 3 - - ~ - ( 1 - y  2) (20) 

or 
X 3 

U~2 ~ = -~ + A3x2 + A4x + As (21) 

where A3, A 4 and A 5 are constants.  
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Equations (14), (19) and (21) yields 

A 1 = 0 ,  A 4 = --~,  t(22 = -- 3y(x-- 1). (22) 

The final expression for the first approximation d!splacement and stress components are given 
by 

U(ll) = - 3 ( x Z - 2 x ) - A 4 y +  A 2 ,  u(2 O) -- X 3 2 3x2+A4x+As 

(23) 
t (1 )  = -3y(x-  1) t (2~ -- -~(1  -y~)  t ~) = 0 
~ x x  , ~ x y  , - y y  " 

For a second approximation theory, (9-13) yield 

u~ 3) - -  vY 3 
3 A 6 y + A 7 '  u(2) = - -vyZ(x- -  1 ) + A 6 x + A 8  

(24) 
t (3) = t (4) = t(5) 0 
~ x x  ~ x y  V y y  = , 

Again the subscripted constants denoted by A are rigid body displacements. 
Eqs. (23) and (24) represent the classical solutions for the strip problem (i.e. beam theory 

and plane elasticity). An investigation of higher approximations indicates that no further 
corrections to the first and second approximation is obtainable. 

4. Formulation of the edge problem 

The solutions obtained in the previous section will, in general, be independent of the boundary 
conditions at the fixed edge. Therefore the interior solution will hold in some region away from 
the edge. Near the edge, i.e. in the "boundary layer", the solution must change rapidly from 
that of the interior solution so as to be able to satisfy the edge conditions of the exact theory. 

To obtain an expression that uniformly represents the solution up to and including the edge, 
we employ a "stretching" of the independent variable x 

~ _ x  X 
e - H" (25) 

Transforming the independent variable, we obtain 

U(x,y; 0 = u ( ~ , y ;  e), t(x,y; e ) = t ( ~ , y ;  e) (26) 

Here u and t are generic symbols representing the displacements and stresses. We assume 
that u and t can be represented by a power series in e in terms of a sequence of "boundary 
layer displacement and stress coefficients", written in terms of generic symbols, p(")(~, y), 
z(")(~, y) where 

N 

u(~,y;e)= 2 I/")(~,y)e ", p(")=0 i f n < O  
n~O 
N (27) 

t(~, y ; ej = E z("' (~, Y) e", z (") = 0 if n < 0.  
n = 0  

Introducing (27) into (5) and (4) yields the constitutive equations 

~ (, (0) _t_ ~ i l )  e ..1_.. (1)/3 " (0) (1) = - v @ %  + z .  ~+.. . )  a~ ,,,1 - .) ~ ( ~ ? + ~  +. . . )  (28) 

C3 " '0) 
= ~ .  +. . . )  ...) , ,  yy _ - ve (z~ + ze~ e + (29) Uyt~ ~ + ~ l ~ e + . . . )  ~.(~o) 4_ (1) e (0~ ~1~ 

#~11') e + '"  ") - c~ (pC2~ +/~(2a) e + '"  ")+ 2(1 + v) e(z~ ~ -"(1) - - ~ y  ~ +  . . . )  o ~y (#4)+ (30) 
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and the equilibrium equations 

04 '  ~ ") + Uy (~ '  ~- " ) = o (30 

0 (T(0).4_ .r(1) g L(T(0y'-I-"C~ly'~;§ . . ) §  § (32) 

Setting the same powers of E to zero in (28-32) yields 

(. a ) _  1 (0#~  ") 0u(2")~ 

,n 1, __ l (~#(n, o#~n,~ 
~yr 1 -v  2 \~y-y + v ~ - /  (33) 

and 

(0#';' 
z~ l ' - 2 ( l + v ) k ~ y - - y  + a ( /  

0.L-~ -1 ) t~T (n-1) t%-(fl-- 1) t~T(n-- 1) 
- -  + v-r - O,  -v~r + v - Y ~  - O. (34) 

0~ ay 04 ~y 

For n =0 these equations yield 

f l ? ) =  B l y  ' fl(o)= _Bx (35) 

wtlere B 1 is an arbitrary constant to be determined. For n > 1 substitution of (33) into (34) 
yields 

a 2#~") (1 + u) a 2 #~") + 
042 2 0~0y 

02# (n) (1 +v) 02#(1") 
- -  § - -  

0 y  2 2 04 0y 

( l - v )  02#~ ") 0 (36) 
+ 2 0y 2 - -  

( l - v )  02#~  ") O. (37) 
- -  + 2 042 - 

The associated boundary conditions require that the surface y = _+ 1 are free of tractions and 
the displacements at 4 =0 is specified. Consider solutions to (36) and (37) of the form 

#(') (4, Y) = a (") v(')(Y, fi) exp [ -  fl(') 4].  (38) 

Here a (") are constants associated with fl('). Substituting (38) into (36) and (37) and accounting 
for the boundary conditions at y = + 1 results in the following transcendental relationship 

sin 2flk = -- 2flk (39) 

sin 2flk = 2ilk (40) 

The roots of Eqs. (39) and (40) with positive real parts occur in pairs, flk and/~k (its conjugate). 
Equation (38) may be then taken in the form 

2k 
#(")(4, Y) = Re Z ka(')kV(')(Y, fl~"))exp [--fl(k")4] (41) 

k=l 

where Re denotes the real part. For non-trivial solutions of (39) we have displacements which 
are symmetrical in y. The displacements and the corresponding stresses are given by 
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2 
kVl = -  flk(l+v ) 

[ !_-: 
k~2 = l_/~k(l+v) 

- -  + t a n  ]~kl COS f iky+y sin flkY 

tan flk l c o s  flk Y -- Y COS flk Y 

_ 1  2 fig] fiky_fikySlnflky}. kZr162 (1 + v) { I ( ~ v )  + flk tan cos " 

i 
~ '  - (i + v) I-(i + / ~  tan ~ )  sin ~ y - / ~ y  cos ~ y ]  

(42) 

1 2 } 
kz'Y- ( l+v)  (l+v~ +f lk tan f lk  COSflkY+flkysinflkY 

where the superscript n has been omitted. The ant!symmetric displacements correspond to 
non-trivial solutions of (40) and are given by 

=[ 0-v) ] 
kt)l Lflk(l+v) + tanflk sinflky+ycOSflky 

kV2 = flk(i+V) tanflk COSflky+ysinflky 

1 
kZ~r -- (1 +V) [(1 +fig tan ilk) sin flkY+flkY COS flkY] (43) 

1 
kZer -- (1 +V) [ilk tan flk cos flkY--flkY sin flkY] 

kTyy - -  
1 

(1 +v) [(1--ilk tan ilk) sin flkY--flkY COS flkY]" 

A straightforward calculation ~vill show that the stress resultants 

kZr162 , ykZr162 , kZcrdy , 
- 1  1 - 1  

are identically equal to zero. Therefore the solutions given by (42) and (43) are self-equilibrating 
and do not provide equilibrium conditions for the strip. In addition, the solutions in the bound- 
ary layer should match the interior solution for large 4. To fulfill the above requirements we 
will add to solutions (42) and (43) the interior solution for e approaching zero. Specifically, we 
assume that each u (") (x, y), t (")(x, y) near x = 0 has a Taylor series expansion 

u(")(x, y) = ~ f~")(x, y) ; t(")(x, y) = ~ fff)(x, y) (44) 
m=O ra=O 

where the generic symbol fff)(x, y) is 

I f  amu(")(x,y) �9 1 
! 8 x m  x=o '  m! 

f 2  )(x, y) = 

~m t(.)(X, y) 
(n __> 0) 

~ x m  x = 0 

From (7-8) and (25) we have in the neighborhood of x = 0 

( . < o )  

(45) 
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N N 

n = 0  m = 0  n = 0  m = 0  

t(x, y; = Z 
n = 0  m = 0  

(46) 

Equation (46) represents the interior solutions in terms of r and y. The edge solution is finally 
determined from (45) and (46): 

/1(.)(~, y) = i~(.)(~, y) + ~ U(n-m)(o, y)~m 
m = 0  

y) = y) + t("-")(o, 
m = O  

(47) 

for each n. 
For the cantilever beam problem, ifn =0 the edge problem is represented by Eqns. (23), (41), 

and (46) as 

/1(1 o)= B l Y ,  /i(2 o)= - B I r  (48) 

The boundary conditions at r  require B1 =As =0. Considering n = 1 next, we have from 
(23), (41) and (47) 

/1(11)= I ,~I )_A4y+A2,  /1(1)= #(21)_ lt(21)+A4~ (49) 

.~(o) ~(o) ,(1) .~(o) _(o) 
~ ~ I , ~  , t ,~y ~ "C~y , - y y  ~ t, y y  . 

If A2 = A4 = 0 is assumed, the trivial solution must be taken as the result. For n = 2, the first 
order edge problem is obtained from (23), (24), (41), and (47) which yield 

2K 

e-~"~ + a ~ y  p(1z) = R e  ~ kakV, 2K+1 
k = l  

2K (2 y2__ ~a) 
/1(22)=Re ~, kakv2e-#kr + 2tc + ta + As 

k = l  

2K 
--pkr 3y (50) ,(1) = R e  ~ kak'Cr +2K+la 

k = l  

2K 

~t?) = R e  ~ kakz~ye -~k~ 
gY 

k = l  

2K 

~(a) = R e  ~, kakzyye -like 
y y  

k = l  

In (50) only the first K values for the eigenfunctions which occur in pairs are considered. The 
constant 2K+ la represents the coefficients of the deformation and corresponding stress which 
result from the interior solution. The reason for its introduction will become apparent in the 
next section. All the constantska are to be normalized by Re (2r+ la) to obtain the final solution. 
It should be noted that only the antisymmetric solution obtained from (43) are included in 
(50). The constant As may be set equal to zero without effecting the results. 

Finally the second approximation is obtained from (23), (24), (41) and (47) for n = 3. The result 
is 
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2 K  

/~?) = R e  Z 
k=l 
2K 

= Re  Z 
k=l 
2K 

~(2) = Re 
k=l 
2K 

~(2) = Re 

,•(2) : Re YY 

kakvle-P~d+2K+la(6 y3 ~2y) 

gakvEe-a~r yZ_�89162 

kak Zr162 e -  #kr -- 2K+ ~ 3a(y 

-- A 9 y + A  7 

gag zr e-  ~e - 2K +la ~ (1 - y2) 
k=l 
2K 

- - / ~ k ~  
E kak "Cyy ~ 

k=l 

(51) 

The terms in (51) are defined as in (50). No generality is lost by taking A7 = A 9 = 0 .  
The effect of the deformations parallel to the fixed edge are seen to occur in (50) while the 

distortion of the cross-section of the beam occurs in (51). 

5. Problem solution 

Equations (50) and (51) will be solved as two separate systems. The results need only be super- 
imposed to yield the total solution. To determine the constants ka the principle of virtual 
complementary work is used in the form 

+ Is2 (U1 c5tr U2 &r (52) 

where er162 e~,,, eyy are the strains, U1, U2 are prescribed displacements, 6~r 6~y, (Sfyy the static- 
ally admissible stresses; 6z~r 3zCy the corresponding tractions for large 4. $1 and $2 are the 
boundaries at ~ =0  and ~ large respectively. The notation 6~ =6(ga)k~ is used. It should be 
clear that U1 and U2 at S z are the displacements for the interior solution. 

Applying the divergence theorem to (52), substituting (50) and (51) into the result and 
furthermore assuming that the decaying exponential terms are negligible for large 4, the two 
integrals which occur at Sz cancel each other. This is a consequence that the tractions and 
displacements from the edge solution match those of the interior solution on S 2. The result is 

2K+l i U 2 ~ l  U2 Yl kakl~2(~'C~r ) -  Ulm(~_~_--~ m(~"C~ dy = 0.  (53) 
m = l  $1 I._ k=l 

In (53) the bar quantities indicate the complex conjugate of the stresses. The relation furnishes 
2K + 1 equations for 2K + 1 unknowns when U 1 and U2 are specified. 

7. Numerical results 

The roots of the transcendental equations were determined numerically with the aid of an 
electronic computer. The values of v and L/H are taken to be 0.25 and 20 respectively. The in- 
tegrals in (53) were performed by hand and the constants ka determined numerically. 

The solution for the first order approximation was obtained by substituting (50) into (53)and 
setting U~ = Ay and U2 = 0. After the constants ka are determined the rigid body displacements 
I~ = - A y  and/~2 = A~ are superimposed to achieve the desired result. In addition it was found 
that a rigid body translation of 0.001705 A was necessary to finally orientate the strip. This 
value of the rigid body translation corresponds to 30 pairs of terms. Of particular interest are 
the results at the clamped edge. The convergence of the horizontal displacement to the desired 
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value (prior to the addition of the rigid body motion) is compared in Fig. 2 for two different 
numbers of pairs of eigenvalues. The lack of agreement was 0.19 percent over the entire cross- 
section for 10 pairs of terms. There is no noticeable difference for 30 pairs. The results for 20 
pairs of terms are not included for clarity. The convergence for u2 is not quite as good for the 
same number of terms. 

1.4 
. . . . . .  10 PAIRS 

30 PAIRS 2 t 
1.0 

0.8- 

0.6- 

0.4" 

0.2 �9 

<_. 
ZD 

/ 

"7 

l I I I 
0.2 0.4 0.6 0.B 1.O 

Y C o o R D I N A T E  

Figure 2. Horizontal displacement for the first approximation at X=0.  

L 

1.80 

1.35' 

0.90" 

0.45' 

. . . . . . .  ~0 PAIRS 

. . . . .  20 PAIRS A ~\ 

30 PAIRS J |  ~-4 

'/ii/// /iJiXl ~li I 
i .  I "  

/, / 

i I I 
0.2 0.4 0.6 0.8 1.0 

Y COORDINATE 

Figure 3. Normal stress for the first approximation at X=0.  

The stress condition at the clamped edge is of particular interest because of the singularity 
which exists at the corners [6]. The normal and shearing stresses are shown in Figs. 3 and 4. 
The computed values are connected by straight lines for comparison with different numbers of 
eigenvalues. It is seen that the behavior is erratic over the entire plane of the cross-section. For 
the normal stresses the erratic behavior increases with a greater number of pairs of eigen- 
values, especially away from the center of the edge toward the corner. This trend is not as 
apparent with the shear stresses. The stress tyy is not plotted as its behavior is also erratic, and 
it was felt no new information would be added by including its results in the figure. 

For the second approximation, the solution is obtained by substituting (51) into (53) and 
setting U1 = 0, U2 = A. Only the rigid body translation U2 = - A need be added to achieve the 
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10 .0 |  [ . . . . . .  10 PAIRS 

20 PAIRS 
8.0 . . . . . .  30 PAIRS 

6.0 
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4.0. 

2.0 

-2 .0  

-4 .0  

-6.0, I I 1 
0.2 0.4 0.6 

Y COORDINATE 

I 
0.8 1.0 

Figure 4. Shear stress for the first approximation at X=0 .  

desired result. The general behavior and quality of convergence are similar to those of the first 
approximation. That is, the agreement with displacements are good, but the stresses were 
again erratic in behavior for the number of terms in the computation. It should be mentioned 
that the normal stresses were about one order of magnitude less than in the first approximation. 

The final result is obtained by superposition of the two solutions in accordance with (47). 
For both solutions the self-equilibrating terms are negligible at X=0.4 H. 

8. Conclusions 

Through the use of parameter expansions, the formulation of the cantilever beam problem was 
obtained in a systematic manner. The classical solution was obtained in the region away from 
the edge without reference to the end fixity. By use of a stretched coordinate, a self-equilibrating 
solution valid in the region adjacent to the edge was obtained. The classical solution was then 
superimposed on this solution in a consistent manner at each level of approximation. The un- 
known constants appearing in the edge solution were then determined by the principle of 
virtual complementary work. The analysis of similar problems in plane elasticity are possible 
by the same technique. 

For the number of terms used in the computation, the series solution for the stresses at the 
edge did not converge. This was particularly noticeable away from the center of the beam axis. 
The trouble encountered here was noted in Torvik's paper [-3] for a similar problem. It was 
noted in that paper that the singularity in the stress field at the corners may have well caused 
the lack of convergence. 

The solution for the displacements at the edge converged quite well. 
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